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Abstract 

 
 Reliability is a well-known issue in 
today’s HPC environments and is expected to 
become even more challenging in the next 
generation peta-scale systems. Because current 
fault tolerance approaches (e.g., 
checkpoint/restart mechanisms) are considered 
to be inefficient due to performance and 
scalability issues, improved fault tolerance 
approaches such as Proactive Fault Avoidance 
(PFA) are today under investigation. The PFA 
approach is based on fault prediction and 
migration in order to reduce both the impact of 
failures on applications and the recovery time. In 
this document, we explore the usage of Artificial 
Neural Networks (ANNs) techniques for fault 
prediction improvement in a PFA context. By 
initially training the feed-forward network with a 
supervised back propagation learning algorithm, 
this network is then fed with historical IPMI 
sensor data collected from our cluster. Results 
show a prediction performance improvement 
over the previous “thresholds trigger” 
approach. 
 
1. Introduction 
 
 Reliability is one of the major issues in 
the HPC systems today. It is expected to become 
even greater challenge in the next generation 
peta-scale systems. The Checkpoint/Restart 
(C/R) mechanism is the current most popular 
fault tolerance mechanism for failure recovery, 
which has been widely deployed in many 
production systems. The major concern with C/R 
mechanisms is that it may be inefficient in large 
scale systems due to the scalability and 
performance issues [18].  

Previously, we have developed a 
mechanism for Proactive Fault Avoidance (PFA) 
as part of the Unified Fault Tolerance (UFT) 
Framework [14]. The mechanism is based on 
fault prediction, and live migration of virtual 
machines. The system’s sensor and thresholds 
are gathered and analyzed online via the 
Intelligent Platform Management Interface 
(IPMI) for faults prediction. In addition, we take 
advantage of the fault tolerant features of 
virtualization to migrate the computing entity 
away from the system when a fault is observed 
or predicted, before causing system failure. 

A common approach for fault prediction 
in the existing framework [13][14] is the usage 
of threshold triggers. Generally, the 
manufacturers set the default thresholds to 
suggest the conditions where the system should 
be operated. If the system doesn’t operate under 
such conditions (e.g., any critical attributes rise 
beyond or drop below the thresholds), it could 
indicate an anomaly. The threshold trigger 
approach is developed based on this fact. When 
the critical attributes reach a certain point near 
the threshold, an event fault alarm is generated 
and actions might be taken. The drawback of the 
threshold trigger approach is that false positive 
alarms may occur when the attributes are 
influenced by the environmental factors (e.g., 
power oscillation, temporary changing of 
surrounding temperature). The environmental 
factors could cause fluctuation of sensor 
attributes beyond the thresholds but unlikely to 
cause system failures. Furthermore, once the 
attributes reach a certain point, it doesn’t 
guarantee that the attribute will continue raising 
or dropping to the thresholds. If an alarm is 
generated in such situation and PFA attempts to 
migrate tasks away, valuable resources will be 
exhausted, which is intolerable for large scale 
systems. 



Artificial Neural Network (ANN) has 
been long studied and applied in wide range 
across problem domains especially in business 
and finance (e.g., sale forecasting, stock/financial 
prediction). It also has been successfully applied 
in engineering-related problems such as 
machinery condition monitoring and electric load 
forecasting [10]. However, to the best of our 
knowledge, ANN for hardware based fault 
prediction in HPC environments has not been 
done in any literatures. The principal strength of 
the ANN is the ability to find the relationship 
pattern between input and output, then to 
recognize the pattern forming a model, which 
later could be used to predict the output when 
inputs are given. 

The purpose of this paper is to study an 
applicability of ANNs for fault prediction in 
HPC environments and to demonstrate the 
possibility of adapting such methods for fault 
prediction purpose, which could be important for 
further research in this area. The rest of this 
paper is organized as following: Section 2 
discusses the related work. In Section 3, we 
explain the methodology, and show how we 
apply an ANN for component fault prediction. 
We validate our method and present the 
experimentation results in Section 4. We 
conclude our work in Section 5. 
 
2. Related research 
  
 ANNs have been studied for over 50 
years. The concept of the ANNs was introduced 
with an attempt to create a model, which could 
simulate the human brain functions. The model 
was expected to be able to make logical 
decisions based on the past experience. The first 
publication toward research in neural networks 
was published by McCulloch and Pitts in 1943, 
which studies and describes human brain 
functions using mathematical models.  In 1949, a 
psychologist, Hebb, discovered that synaptics, 
connections between neurons inside the human 
brain, are changing as a person learns. Today, we 
have seen ANNs applied in the real world to 
solve different types of problem domains and it 
could produce fairly accurate results in 
forecasting problems. W. Tian in [11] used ANN 
to predict web contents that are likely to be re-
accessed. The predicted contents could be cached 
in order to decrease future access time. 
 Many authors reported successes 
applying ANNs to their research. The majority of 
these studies are done in the area of business and 

financial. The following are examples of ANNs 
in business and financial applications: 
Kryzanowski [2] and Wong [5] use ANNs to 
help in stock selection; Refenes [3] uses ANNs 
to evaluate stock performance; in [6] authors use 
ANNs in Financial Asset Management; and 
Moody [7] explores ANNs to predict economy. 
ANNs do not only emerge into financial and 
business fields, but there are also several 
publications in medical and engineering fields 
which reporte the uses of ANNs. For example, 
Atienza and et al. employs ANNs to stratify risk 
of heart failure [8]. ANNs is also applied for face 
recognition application [12]  and for hand written 
recognition [9]. 
 A number of fault tolerance frameworks 
for PFA [13][14][15] have been designed and 
developed for a deployment in large scale 
systems. Studies have only focused on fault 
tolerance methods and policies. The fault 
prediction mechanism in the framework relies on 
the simple threshold trigger method. Data 
collected from hardware monitors is assumed to 
be accurate and does not lead to false prediction 
[13] 
 
3. Fault Prediction with Artificial 
Neural Network 
 
 Artificial Neural Network (ANN) has 
been reported to successfully resolve complex 
problems in several different disciplines. In 
addition, several studies have shown that ANN is 
able to use in time-series prediction with fair 
accuracy results. In this section, we present a 
methodology for fault prediction in HPC 
environments based on ANNs. We use ANN for 
time-series prediction to anticipate future sensor 
data.  The ultimate goal is to apply ANN in our 
proactive fault avoidance framework [13][14] to 
create an intelligent fault predictor to minimize 
the number of fault alarms. 

We apply Java Object Oriented Neural 
Engine (Joone) [16] to build and train the 
network. Joone is a free java based ANN 
framework for building and training ANN. It 
supports several learning algorithms and network 
topologies. In addition, it provides Java APIs for 
developers to build and train networks in their 
applications. We build a feed-forward multi-
layer perceptron network with 29 sigmoid 
neurons in input layer, 45 sigmoid neurons in a 
single hidden layer, and 1 sigmoid neuron in 
output layer. The neurons are fully connected 
with synapses to the neuron in the next layer. 



The network is built with the Joone GUI editor 
as shown in Figure 3.1. 

The network is trained with a 
supervised back-propagation learning algorithm, 
and then the network parameters are chosen with 
trial and error approach. The network’s 
parameters that could produce the output closest 
to the desired output and low Root Mean Square 
Error (RMSE) rate during the training phase are 
used for testing and prediction.  
 

 
Figure 3.1: Design of the ANN in Joone’s GUI 

 
In general, sample data must be 

collected and processed for the training. The 
extraneous information is removed and the 
remaining data is adjusted in the proper format. 
In the training process, the network is fed with 
the input vector and desired output several times, 
allowing the network to recognize the 
relationship between input and the desired 
output. Each phase is described in subsections 
below. 
 
3.1 Data Collection and Preprocessing  

 
Typically, data must be collected from 

one of nodes in a cluster. To demonstrate how 
data is collected and preprocessed, we illustrate 
the proof-of-concept process on a node in our 
HPC cluster. The configuration of the node is 
dual 3GHz Intel Xeon processors with 4 GB of 
memory. The average CPU usage during data 
collection is above 90%. Data is retrieved 
periodically with a 10 seconds interval using 
OpenIPMITool [17]. There are a total of 29 
sensors available on the node, which could be 
classified into 3 categories: 14 voltage sensors, 
10 temperature sensors, and 5 fan sensors. The 
raw data format gathered from OpenIPMITool is 
{Sensor name, Sensor value, Unit, Status, lnr, 
lcr, lnc, unc, ucr, unr}, as shown in Figure 3.2.  

 
Where:  lnr : lower non-recoverable thresholds 

lcr : lower critical thresholds  

lnc : lower non-critical thresholds  
unc : upper non-critical thresholds  
ucr : upper critical thresholds 
unr : upper non-recoverable thresholds 

 

 
Figure 3.2: Raw data from OpenIPMITool 

 
While collecting data, faults are injected 

into the system to simulate failure scenarios. The 
air vents are blocked and some of the fans are 
stopped in order to block the air circulation and 
increase the temperature on some specific 
components of the system. 

We then filter raw data to both remove 
irrelevant information and reformat into a format 
compliant with Joone. The final data is the 
following: 
 
{x1 ; x2 ;…; xm ; y1 ; y2 ;…; yn ; z1 ; z2 ;…; zo ; α} 

 
Where:      

Xm is value of voltages sensors (in 
volts)  

yn is value of temperature sensors (in 
degree Celcius) 

zo is value of fan sensors (in Round Per 
Minute(RPM)) 

α is current state of the system 
   

Currently, it is challenging to determine 
when an actual failure occurs by simply 
determining the sensor values and thresholds. 
Even though the manufacturers pre-set the 
default thresholds to suggest the conditions 
where the system should operate. If the system 
doesn’t operate under these conditions, it may 
behave irregularly or fail. However, some 
systems may be working normally beyond 
thresholds. For example, if the critical thresholds 
temperature is 80 degree Celsius, some systems 
may fail when the system temperature reaches 95 
degree Celsius, some other may fail at 80 degree 
Celsius. For sake of simplicity, we assume that a 
system fails when any of the crucial sensors 
violate the critical thresholds which existing FT 
policies are normally deployed [13][14].    



 We define α as the current state of the 
system, which is enumerated by determining the 
system status. It could only be two possibilities: 
“1” for failed system, and “0” for working 
system. We eliminate data from the fan sensors 
since the fan fault is unlikely to cause directly a 
system failure, so if this leads to a failure, it may 
be triggered by other sensors (e.g., temperature 
sensor). In other words, if any of the sensors 
goes beyond or drop below the critical 
thresholds, the state of the system is set to 1, 
otherwise 0: 
 
     1 ; xn, yn > ucr  
α =                ; xn, yn < lcr 
     0 ; otherwise  
 
Since the ANNs expect input and desired output 
to be in range 0 and 1, all data must be 
normalized before being processed for network 
training. We use Equation (1) for data 
normalization technique. 
  

N(Xi) = (Xi – Xmin) / Xmax     (1) 
 

It is also important to note that we only 
collect sensor data via IPMI for demonstration 
purposes. However, the data collected from 
similar mechanisms (e.g. SMART for disk 
failure prediction) could also be processed and 
fed the network. 
 
3.2 Training 
  
 The network is trained with back-
propagation algorithm. The back propagation is 
the most widely used algorithm to train neural 
networks. The training is based on a simple 
concept: if the network gives a wrong answer, 
then the weights linked between neurons are 
corrected so that the error is lessened and as a 
result, future responses of the network are more 
likely to be correct [1]. 

In this step, the network is trained with 
the normalized xn, yn and zn as input vectors and 
the future system state (αt + 1) as the desired 
output as illustrated in Figure 3.3.  

 
 

 

 
Figure 3.3: Training network with input and 

desired output 
 
4. Evaluation and Discussion 
  

In our experiment, we start collecting 
IPMI data with OpenIPMITool with 10 seconds 
interval. The initial training data has total of 360 
entries.  During data collection, we inject faults 
into the system by stopping the system’s fans 
and block CPUs air vent to increase the 
temperature of CPU1 and CPU2 respectively (we 
use dual processor node). Furthermore, we 
include simulated fault positive data of CPU 
temperature to the training data to train the 
network to recognize the fault positive events. 
Data is normalized and transformed into the 
Joone readable format. During the training, we 
choose learning rate = 0.2, momentum = 0.4, 
epochs = 1000, and training pattern = 360. 

After the network is trained, we use the 
network to predict larger data sets. The testing 
data set contains 3000 records, which consist of 
normal, actual faults and fault positive events. 
We use the same method to inject faults on 
CPU1 and CPU2. 

We expect output to be 2 possible 
values; fail (1), or not fail (0). The output from 
the ANN, however, is range from 0 to 1, 
therefore, if the output is greater than 0.5, we 
consider the system is going to fail (1) and if the 
output is less than 0.5, the system is not going to 
fail (0)  

In Figure 4.1, we show the results of 
ANN prediction once we increase the 
temperature of CPU1 beyond the critical 
threshold (at 0.8). 

 
 
 
 
 
 
 
 

  



 
 
 
 
 
 
 
 

 
 

Figure 4.1: CPU1 temperature rising above the 
threshold 

 
 Similarly, with CPU2 temperature, the 
result from the ANN could raise up before the 
actual temperature reach the failing point (see 
Figure 4.2). 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.2: CPU2 temperature rising above the 
threshold 

 
Interestingly, we have observed from previous 2 
experiments, that the network determines the 
output from the combination of available sensor 
values. For example, in both Figure 4.1 and 4.2, 
the output from the network raised above 0.5, 
when more than one fans are stopped. 
 

 
Figure 4.3 False positive event 

 
In Figure 4.3, we simulate false positive 

event of temperature from CPU1. The CPU1 
temperature is raised very near the critical 
threshold. Other components are in the normal 
operation (e.g., no fan is stopped). The output 
from the network slightly increases from the 
normal when the fault positive event occurs but 

not high enough to pass 0.5. In contrast, the same 
event with the threshold trigger approach, once 
the CPU1 temperature increase over the certain 
point near the critical threshold (typically, 0.7 - 
0.75), the alarm is generated and actions might 
be taken to evade the computing entity. 
 
5. Conclusion and Future work 

 
In this paper, we present our on-going 

research on fault prediction in HPC 
environments with artificial neural network. We 
built a feed-forward network and trained it based 
on a back-propagation algorithm with historical 
IPMI data collected from our live system. The 
network shows promising prediction results. 
Based on the study in this paper, an intelligent 
fault predictor could be implemented in the 
proactive fault avoidance framework to improve 
fault prediction accuracy and reduce the number 
of fault alarms. 

The major concern of fault prediction 
with ANN approach is performance. The 
network must be periodically trained with new 
data sets. We are continuing to study ANN with 
different techniques to reduce the overhead. One 
possibility would be using the ANN as fault 
recognition; the network is trained with fault 
data set to recognize the fault patterns. The 
network is then expected to identify whether the 
given input matches the previous fault patterns 
or not. Once the network fails to recognize the 
failure, it is retrained with the new fault data set. 
Furthermore, the irrelevant data in the training 
data should be removed in order to reduce 
number of inputs and number of neurons in the 
hidden layer for faster network training. 

Additionally, we study fault prediction 
using ANN based on a uni-variable model. In the 
future research, we could verify the performance 
based on multi-variables with actual data or 
simulation. 
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