
A Neural Networks Approach for Intelligent Fault Prediction in HPC Environments

Kulathep Charoenpornwattana, Chokchai Leangsuksun
{kch020, box}@latech.edu

Computer Science, College of Engineering & Science
Louisiana Tech University, Ruston LA, 71272, USA

Geoffroy Vallée, Anand Tikotekar, Stephen L. Scott

{valleegr, tikotekaraa, scottsl}@ornl.gov

Computer Science and Mathematics Division
Oak Ridge National Laboratory, Oak Ridge TN, 37831, USA

Abstract

 Reliability is a well-known issue in
today’s HPC environments and is expected to
become even more challenging in the next
generation peta-scale systems. Because current
fault tolerance approaches (e.g.,
checkpoint/restart mechanisms) are considered
to be inefficient due to performance and
scalability issues, improved fault tolerance
approaches such as Proactive Fault Avoidance
(PFA) are today under investigation. The PFA
approach is based on fault prediction and
migration in order to reduce both the impact of
failures on applications and the recovery time. In
this document, we explore the usage of Artificial
Neural Networks (ANNs) techniques for fault
prediction improvement in a PFA context. By
initially training the feed-forward network with a
supervised back propagation learning algorithm,
this network is then fed with historical IPMI
sensor data collected from our cluster. Results
show a prediction performance improvement
over the previous “thresholds trigger”
approach.

1. Introduction

 Reliability is one of the major issues in
the HPC systems today. It is expected to become
even greater challenge in the next generation
peta-scale systems. The Checkpoint/Restart
(C/R) mechanism is the current most popular
fault tolerance mechanism for failure recovery,
which has been widely deployed in many
production systems. The major concern with C/R
mechanisms is that it may be inefficient in large
scale systems due to the scalability and
performance issues [18].

Previously, we have developed a
mechanism for Proactive Fault Avoidance (PFA)
as part of the Unified Fault Tolerance (UFT)
Framework [14]. The mechanism is based on
fault prediction, and live migration of virtual
machines. The system’s sensor and thresholds
are gathered and analyzed online via the
Intelligent Platform Management Interface
(IPMI) for faults prediction. In addition, we take
advantage of the fault tolerant features of
virtualization to migrate the computing entity
away from the system when a fault is observed
or predicted, before causing system failure.

A common approach for fault prediction
in the existing framework [13][14] is the usage
of threshold triggers. Generally, the
manufacturers set the default thresholds to
suggest the conditions where the system should
be operated. If the system doesn’t operate under
such conditions (e.g., any critical attributes rise
beyond or drop below the thresholds), it could
indicate an anomaly. The threshold trigger
approach is developed based on this fact. When
the critical attributes reach a certain point near
the threshold, an event fault alarm is generated
and actions might be taken. The drawback of the
threshold trigger approach is that false positive
alarms may occur when the attributes are
influenced by the environmental factors (e.g.,
power oscillation, temporary changing of
surrounding temperature). The environmental
factors could cause fluctuation of sensor
attributes beyond the thresholds but unlikely to
cause system failures. Furthermore, once the
attributes reach a certain point, it doesn’t
guarantee that the attribute will continue raising
or dropping to the thresholds. If an alarm is
generated in such situation and PFA attempts to
migrate tasks away, valuable resources will be
exhausted, which is intolerable for large scale
systems.

Artificial Neural Network (ANN) has
been long studied and applied in wide range
across problem domains especially in business
and finance (e.g., sale forecasting, stock/financial
prediction). It also has been successfully applied
in engineering-related problems such as
machinery condition monitoring and electric load
forecasting [10]. However, to the best of our
knowledge, ANN for hardware based fault
prediction in HPC environments has not been
done in any literatures. The principal strength of
the ANN is the ability to find the relationship
pattern between input and output, then to
recognize the pattern forming a model, which
later could be used to predict the output when
inputs are given.

The purpose of this paper is to study an
applicability of ANNs for fault prediction in
HPC environments and to demonstrate the
possibility of adapting such methods for fault
prediction purpose, which could be important for
further research in this area. The rest of this
paper is organized as following: Section 2
discusses the related work. In Section 3, we
explain the methodology, and show how we
apply an ANN for component fault prediction.
We validate our method and present the
experimentation results in Section 4. We
conclude our work in Section 5.

2. Related research

 ANNs have been studied for over 50
years. The concept of the ANNs was introduced
with an attempt to create a model, which could
simulate the human brain functions. The model
was expected to be able to make logical
decisions based on the past experience. The first
publication toward research in neural networks
was published by McCulloch and Pitts in 1943,
which studies and describes human brain
functions using mathematical models. In 1949, a
psychologist, Hebb, discovered that synaptics,
connections between neurons inside the human
brain, are changing as a person learns. Today, we
have seen ANNs applied in the real world to
solve different types of problem domains and it
could produce fairly accurate results in
forecasting problems. W. Tian in [11] used ANN
to predict web contents that are likely to be re-
accessed. The predicted contents could be cached
in order to decrease future access time.
 Many authors reported successes
applying ANNs to their research. The majority of
these studies are done in the area of business and

financial. The following are examples of ANNs
in business and financial applications:
Kryzanowski [2] and Wong [5] use ANNs to
help in stock selection; Refenes [3] uses ANNs
to evaluate stock performance; in [6] authors use
ANNs in Financial Asset Management; and
Moody [7] explores ANNs to predict economy.
ANNs do not only emerge into financial and
business fields, but there are also several
publications in medical and engineering fields
which reporte the uses of ANNs. For example,
Atienza and et al. employs ANNs to stratify risk
of heart failure [8]. ANNs is also applied for face
recognition application [12] and for hand written
recognition [9].
 A number of fault tolerance frameworks
for PFA [13][14][15] have been designed and
developed for a deployment in large scale
systems. Studies have only focused on fault
tolerance methods and policies. The fault
prediction mechanism in the framework relies on
the simple threshold trigger method. Data
collected from hardware monitors is assumed to
be accurate and does not lead to false prediction
[13]

3. Fault Prediction with Artificial
Neural Network

 Artificial Neural Network (ANN) has
been reported to successfully resolve complex
problems in several different disciplines. In
addition, several studies have shown that ANN is
able to use in time-series prediction with fair
accuracy results. In this section, we present a
methodology for fault prediction in HPC
environments based on ANNs. We use ANN for
time-series prediction to anticipate future sensor
data. The ultimate goal is to apply ANN in our
proactive fault avoidance framework [13][14] to
create an intelligent fault predictor to minimize
the number of fault alarms.

We apply Java Object Oriented Neural
Engine (Joone) [16] to build and train the
network. Joone is a free java based ANN
framework for building and training ANN. It
supports several learning algorithms and network
topologies. In addition, it provides Java APIs for
developers to build and train networks in their
applications. We build a feed-forward multi-
layer perceptron network with 29 sigmoid
neurons in input layer, 45 sigmoid neurons in a
single hidden layer, and 1 sigmoid neuron in
output layer. The neurons are fully connected
with synapses to the neuron in the next layer.

The network is built with the Joone GUI editor
as shown in Figure 3.1.

The network is trained with a
supervised back-propagation learning algorithm,
and then the network parameters are chosen with
trial and error approach. The network’s
parameters that could produce the output closest
to the desired output and low Root Mean Square
Error (RMSE) rate during the training phase are
used for testing and prediction.

Figure 3.1: Design of the ANN in Joone’s GUI

In general, sample data must be

collected and processed for the training. The
extraneous information is removed and the
remaining data is adjusted in the proper format.
In the training process, the network is fed with
the input vector and desired output several times,
allowing the network to recognize the
relationship between input and the desired
output. Each phase is described in subsections
below.

3.1 Data Collection and Preprocessing

Typically, data must be collected from

one of nodes in a cluster. To demonstrate how
data is collected and preprocessed, we illustrate
the proof-of-concept process on a node in our
HPC cluster. The configuration of the node is
dual 3GHz Intel Xeon processors with 4 GB of
memory. The average CPU usage during data
collection is above 90%. Data is retrieved
periodically with a 10 seconds interval using
OpenIPMITool [17]. There are a total of 29
sensors available on the node, which could be
classified into 3 categories: 14 voltage sensors,
10 temperature sensors, and 5 fan sensors. The
raw data format gathered from OpenIPMITool is
{Sensor name, Sensor value, Unit, Status, lnr,
lcr, lnc, unc, ucr, unr}, as shown in Figure 3.2.

Where: lnr : lower non-recoverable thresholds

lcr : lower critical thresholds

lnc : lower non-critical thresholds
unc : upper non-critical thresholds
ucr : upper critical thresholds
unr : upper non-recoverable thresholds

Figure 3.2: Raw data from OpenIPMITool

While collecting data, faults are injected

into the system to simulate failure scenarios. The
air vents are blocked and some of the fans are
stopped in order to block the air circulation and
increase the temperature on some specific
components of the system.

We then filter raw data to both remove
irrelevant information and reformat into a format
compliant with Joone. The final data is the
following:

{x1 ; x2 ;…; xm ; y1 ; y2 ;…; yn ; z1 ; z2 ;…; zo ; α}

Where:

Xm is value of voltages sensors (in
volts)

yn is value of temperature sensors (in
degree Celcius)

zo is value of fan sensors (in Round Per
Minute(RPM))

α is current state of the system

Currently, it is challenging to determine
when an actual failure occurs by simply
determining the sensor values and thresholds.
Even though the manufacturers pre-set the
default thresholds to suggest the conditions
where the system should operate. If the system
doesn’t operate under these conditions, it may
behave irregularly or fail. However, some
systems may be working normally beyond
thresholds. For example, if the critical thresholds
temperature is 80 degree Celsius, some systems
may fail when the system temperature reaches 95
degree Celsius, some other may fail at 80 degree
Celsius. For sake of simplicity, we assume that a
system fails when any of the crucial sensors
violate the critical thresholds which existing FT
policies are normally deployed [13][14].

 We define α as the current state of the
system, which is enumerated by determining the
system status. It could only be two possibilities:
“1” for failed system, and “0” for working
system. We eliminate data from the fan sensors
since the fan fault is unlikely to cause directly a
system failure, so if this leads to a failure, it may
be triggered by other sensors (e.g., temperature
sensor). In other words, if any of the sensors
goes beyond or drop below the critical
thresholds, the state of the system is set to 1,
otherwise 0:

 1 ; xn, yn > ucr
α = ; xn, yn < lcr
 0 ; otherwise

Since the ANNs expect input and desired output
to be in range 0 and 1, all data must be
normalized before being processed for network
training. We use Equation (1) for data
normalization technique.

N(Xi) = (Xi – Xmin) / Xmax (1)

It is also important to note that we only
collect sensor data via IPMI for demonstration
purposes. However, the data collected from
similar mechanisms (e.g. SMART for disk
failure prediction) could also be processed and
fed the network.

3.2 Training

 The network is trained with back-
propagation algorithm. The back propagation is
the most widely used algorithm to train neural
networks. The training is based on a simple
concept: if the network gives a wrong answer,
then the weights linked between neurons are
corrected so that the error is lessened and as a
result, future responses of the network are more
likely to be correct [1].

In this step, the network is trained with
the normalized xn, yn and zn as input vectors and
the future system state (αt + 1) as the desired
output as illustrated in Figure 3.3.

Figure 3.3: Training network with input and

desired output

4. Evaluation and Discussion

In our experiment, we start collecting
IPMI data with OpenIPMITool with 10 seconds
interval. The initial training data has total of 360
entries. During data collection, we inject faults
into the system by stopping the system’s fans
and block CPUs air vent to increase the
temperature of CPU1 and CPU2 respectively (we
use dual processor node). Furthermore, we
include simulated fault positive data of CPU
temperature to the training data to train the
network to recognize the fault positive events.
Data is normalized and transformed into the
Joone readable format. During the training, we
choose learning rate = 0.2, momentum = 0.4,
epochs = 1000, and training pattern = 360.

After the network is trained, we use the
network to predict larger data sets. The testing
data set contains 3000 records, which consist of
normal, actual faults and fault positive events.
We use the same method to inject faults on
CPU1 and CPU2.

We expect output to be 2 possible
values; fail (1), or not fail (0). The output from
the ANN, however, is range from 0 to 1,
therefore, if the output is greater than 0.5, we
consider the system is going to fail (1) and if the
output is less than 0.5, the system is not going to
fail (0)

In Figure 4.1, we show the results of
ANN prediction once we increase the
temperature of CPU1 beyond the critical
threshold (at 0.8).

Figure 4.1: CPU1 temperature rising above the
threshold

 Similarly, with CPU2 temperature, the
result from the ANN could raise up before the
actual temperature reach the failing point (see
Figure 4.2).

Figure 4.2: CPU2 temperature rising above the
threshold

Interestingly, we have observed from previous 2
experiments, that the network determines the
output from the combination of available sensor
values. For example, in both Figure 4.1 and 4.2,
the output from the network raised above 0.5,
when more than one fans are stopped.

Figure 4.3 False positive event

In Figure 4.3, we simulate false positive

event of temperature from CPU1. The CPU1
temperature is raised very near the critical
threshold. Other components are in the normal
operation (e.g., no fan is stopped). The output
from the network slightly increases from the
normal when the fault positive event occurs but

not high enough to pass 0.5. In contrast, the same
event with the threshold trigger approach, once
the CPU1 temperature increase over the certain
point near the critical threshold (typically, 0.7 -
0.75), the alarm is generated and actions might
be taken to evade the computing entity.

5. Conclusion and Future work

In this paper, we present our on-going

research on fault prediction in HPC
environments with artificial neural network. We
built a feed-forward network and trained it based
on a back-propagation algorithm with historical
IPMI data collected from our live system. The
network shows promising prediction results.
Based on the study in this paper, an intelligent
fault predictor could be implemented in the
proactive fault avoidance framework to improve
fault prediction accuracy and reduce the number
of fault alarms.

The major concern of fault prediction
with ANN approach is performance. The
network must be periodically trained with new
data sets. We are continuing to study ANN with
different techniques to reduce the overhead. One
possibility would be using the ANN as fault
recognition; the network is trained with fault
data set to recognize the fault patterns. The
network is then expected to identify whether the
given input matches the previous fault patterns
or not. Once the network fails to recognize the
failure, it is retrained with the new fault data set.
Furthermore, the irrelevant data in the training
data should be removed in order to reduce
number of inputs and number of neurons in the
hidden layer for faster network training.

Additionally, we study fault prediction
using ANN based on a uni-variable model. In the
future research, we could verify the performance
based on multi-variables with actual data or
simulation.

Acknowledgement

We thank Dr.Vir V. Phoha, a computer
science professor at Louisiana Tech University
for his help and valuable discussions during this
research.

Fail

Fail

References

[1] J. E. Dayhoff, Neural Network
architectures. An introduction, International
Thompson Publishing 1990.
 [2] Kryzanowski L., Galler M., Wright
D.W., “Using Artificial Network to Pick
Stocks”, Financial Analyst Journal, August 1993,
pp. 21-27
 [3] Refenes, A.N., Zapranis, A.,
Francis, G., “Stock Performance Modeling Using
Neural Networks: A Comparative Study with
Regression Models”, Neural Networks, vol. 7
No. 2, 1994, pp 375-388
 [4] Schoeneburg, E., “Stock Price
Prediction Using Neural Networks: A Project
Report”, Neurocomputing, vol.2, 1990, pp. 17-
27
 [5] Wong, F.S., Wang, P.Z., Goh, T.H.,
Quek, B.K., “Fuzzy Neural Systems for Stock
Selection”, Financial Analyst Journal, January-
February 1992, pp. 47-53
 [6] A. Refenes and M. Azema-Barac,
“Neural Network Applications in Financial Asset
Management” Neural Computing Application,
vol.2, pp.13-29, 1994
 [7] Moody J., “Forecasting the
Economy with Neural Nets: A Survey of
Challenges and Solutions”. In Orr G.B and,
Muller K.-R. (Eds.) Neural Networks: Tricks of
the Trade, pp. 347-371, Springer, Berlin, 1998
 [8] Atienza F. et al. “Risk Stratification
in Heart Failure Using Artificial Neural
Networks”, Research paper, Cardiology
Department, University General Hospital,
Valencia, 2000. Available at
http://www.amia.org/pubs/symposia/D200367.P
DF
 [9] Palacios R. and Gupta A. “Training
Neural Networks for Reading Hand Written
Amount on Check”, Working paper 4365-02,
MIT Sloan School of Management, Cambridge,
Massachusetts, 2002. Available at
http://ssm.com/abstract_id=314779
 [10] D. Park, M. El-Sharkawi, R.
Marks, L. Atlas, and M. Damborg, “Electric load
forecasting using an Artificial Neural Network”,
IEEE Trans. Power Syst. Vol. 6, pp 442-449,
May 1991
 [11] Wen Tian, Ben Choi, and Vir
Phoha, “An Adaptive Web Cache Access
Predictor Using Neural Network,” Developments
in Applied Artificial Intelligence, IEA/AIE 2002,
Lecture Notes in Artificial Intelligence, Vol.
2358, pp. 450-459, 2002.

 [12] Lawrence, S. Giles, C.L., Tsoi,
A.C., Back, A.D., “Face Recognition: A
Convolutional Neural Network Approach”, IEEE
Transaction on Neural Network, 8, 98-113.
 [13] G. Vallee, K. Charoenpornwattana,
C. Engelmann, A. Tikotekar, C. Leangsuksun, T.
Naughton, S.L. Scott, “A Framework For
Proactive Fault tolerance”, In proceedings of the
Third International Conference on Availability,
Reliability and Security (ARES 2008),
Barcelona, Spain,
 [14] K. Charoenpornwattana, C.
Leangsuksun, G. Vallee, A. Tilotekar, S.L. Scott,
“A Scalable Unified Fault Tolerance
Framework”, submitted to International
Conference on Distributed computing System
(ICDCS 2008), Beijing China.

[15] A. Nagarajan, F. Mueller, C.
Engelmann, S. L. Scott, “Proactive Fault
Tolerance for HPC with Xen”, in ICS ’07: of the
21st annual international conference on
Supercomputing. New York, NY, USA: ACM
Press, 2007, pp. 23–32.

[16] Joone : http://www.joone.org
[17] OpenIPMITool :

http://ipmitool.sourceforge.net
[18] R. Oldfield, “Investigating

lightweight storage and overlay network, for
fault tolerance,” in HAPCW’06: High
Availability and Performance Computing
Workshop. Santa Fe, New Mexico, USA: Held
in conjunction with LACSI 2006, OCT 2006.

